Complex Analysis

Parametric interval

Curve

- $0 \le t \le 1 \qquad z(t)$ $0 \le t \le \alpha \qquad \rightarrow \qquad 0 \le \frac{t}{\alpha} \le 1 \qquad z\left(\frac{t}{\alpha}\right)$ $a \le t \le a + \alpha \qquad \rightarrow \qquad 0 \le t - a \le \alpha \qquad z\left(\frac{t - a}{\alpha}\right)$ $0 \le \frac{t - a}{\alpha} \le 1$
- $z = z(t) \rightarrow \gamma \quad a \le t \le b$ $z = z(-t) \rightarrow -\gamma \quad -b \le t \le -a$

$$\Gamma = (\gamma_1, \gamma_2, \dots, \gamma_{n-1}, \gamma_n) \qquad a \le t \le b$$

-
$$\Gamma = (-\gamma_n, -\gamma_{n-1}, \dots, -\gamma_2, -\gamma_1) \quad -b \le t \le -a$$

Sum of two trigonometric functions can be obtained by using complex exponentials (phasors). Consider sum of two cosines. Real part of an complex exponential is a cosine. Therefore real part of sum of complex exponentials corresponding to these cosines provide the sum of the two cosines.

$$A\cos(\theta) + B\cos(\theta + \beta) = C\cos(\theta + \alpha)$$

$$Ae^{i\theta} + Be^{i(\theta + \beta)} = Ce^{i(\theta + \alpha)}$$

$$e^{i\theta} (A + Be^{i\beta}) = Ce^{i\alpha} e^{i\theta}$$

$$A + Be^{i\beta} = Ce^{i\alpha}$$

Example : Find $3\cos(\theta) + 4\sin(\theta)$.

$$\begin{array}{rcl} 3 + 4e^{-i\pi/2} & = & 3 - 4i & = & 5e^{-i0.93} \\ 3\cos(\theta) + 4\sin(\theta) & = & 5\cos(\theta - 0.93) \end{array}$$

Example :

In the following circuit (upper circuit) AC source; $2\cos(t)$ is connected for a long time and the responses to this source are at steady state. Since $\cos(t) = \operatorname{Re}\left[e^{it}\right]$, the voltage on capacitor for AC source is real part of the output on the capacitor for the complex exponential source; $v_o(t) = \operatorname{Re}\left[V_o e^{i\theta} e^{it}\right]$ (middle circuit). The voltage-current ratio (impedance) of the *R* and *C* for the exponential excitation are constant and 1Ω and $-i\sqrt{3}\Omega$ respectively. Consequently the circuit is reduced to a DC resistance circuit (lower circuit). The circuit is a simple voltage divider and the capacitor voltage is $V_o e^{i\theta} = \frac{2}{1-i\sqrt{3}} \cdot \left(-i\sqrt{3}\right)$. Using this methodology the steady state voltage $v_o(t)$ on the capacitor can be easily obtained.

$$V_{o}e^{i\theta} = \frac{2}{1-i\sqrt{3}} \cdot (-i\sqrt{3}) = 2 \frac{-i\sqrt{3}(3-i\sqrt{3})}{1+3}$$

= $\frac{1}{2}(-i\sqrt{3}+3) = \sqrt{3}e^{-i\pi/6}$
 $v_{o}(t) = \operatorname{Re}\left[V_{o}e^{i\theta}e^{it}\right] = \operatorname{Re}\left[\sqrt{3}e^{-i\pi/6}e^{it}\right]$
= $\operatorname{Re}\left[\sqrt{3}e^{i(t-\pi/6)}\right] = \sqrt{3}\cos(t-\pi/6)$ Volt

A list of definitions and theorems from the textbook "Fundamentals of Complex Analysis for Mathematics, Science and Engineering" by E. B. Saff and A. D. Snider.

Definition: Let f(z) be a function defined in the neighborhood of z_0 . Then f(z) is continuous at z_0 if

 $\lim_{z \to z_0} f(z) = f(z_0) \,.$

Definition: Let f(z) be a complex-valued function defined in the neighborhood of z_0 . Then the derivative of f(z) at z_0 is given by

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z)}{\Delta z},$$

provided this limit exists.

Definition: A complex-valued function f(z) is said to be analytic on an open set G if it has a derivative at every point of G.

Theorem: Let f(z) = u(x, y) + iv(x, y) be defined in some open set G. If the first partial derivatives of u and v are continuous and satisfy the Cauchy-Riemann equations at all points of G, then f(z) is analytic in G.

Definition: A real-valued function $\phi(x, y)$ is said to be harmonic in a domain D if all its secondorder partial derivatives are continuous in D and if at each point of D, ϕ satisfies

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0.$$

Theorem: If f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then each of the functions u(x, y) and v(x, y) are harmonic in D.

De Moivre's formula

$$[r\cos(\theta) + ir\sin(\theta)]^n = r^n\cos(n\theta) + ir^n\sin(n\theta)$$

Elementary functions.

The complex exponential function.

Definition: If z = x + iy, then e^z is defined to be a complex number

 $e^{z} = e^{x} \left(\cos \left(y \right) + i \sin \left(y \right) \right).$

Definition: Given any complex number z, we define

$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos(z) = \frac{e^{iz} + e^{-iz}}{2}.$$

Definition: For any complex number z we define

$$\sinh(z) = \frac{e^z - e^{-z}}{2}, \quad \cosh(z) = \frac{e^z + e^{-z}}{2}.$$

The logarithmic function.

Definition: If $z \neq 0$, then we define $\log(z)$ to any of the infinitely many values

$$\log(z) = \operatorname{Log}(|z|) + i(\theta + 2\pi k), \qquad k \in \mathbb{Z},$$

where θ denotes a particular value of arg (z).

The branch of the logarithm for k = 0 is called the principal value of $\log(z)$ and we refer it as the principal value of $\log(z)$. We denote this function by Log(z), i.e.,

$$\operatorname{Log}(z) = \operatorname{Log}(|z|) + i\operatorname{Arg}(z).$$

Definition: If α is a complex constant and $z \neq 0$, then we define z^{α} by

 $z^{\alpha} = e^{\alpha \log(z)}$

If α is not a real rational number, we obtain infinitely many different values for z^{α} . On the other hand, if $\alpha = m/n$ where m and n > 0 are integers having no common factor, then n distinct values of $z^{m/n}$, namely

$$z^{m/n} = e^{(m/n) \operatorname{Log}(|z|)} e^{i(m/n) (\operatorname{Arg}(z) + 2\pi k)} \qquad (k = 0, 1, \dots, n-1).$$

Definition: A point set γ in the complex plane is said to be a <u>smooth arc</u> if it is the range of some continuous complex-valued function z = z(t), $a \leq t \leq b$, which satisfies the following conditions:

- (i) z(t) has a continuous derivative on [a, b],
- (ii) z'(t) never vanishes on [a, b],
- (iii) z(t) is one-to-one on [a, b].

A point set γ is called a <u>smooth closed curve</u> if it is the range of continuous function z = z(t), $a \le t \le b$, satisfying conditions (i) and (ii) above and the following:

(iii)' z(t) is one-to-one on the half-open interval [a, b), but z(b) = z(a) and z'(b) = z'(a).

The phrase " γ is a smooth curve" means that γ is either a smooth arc or a smooth closed curve.

Definition: A <u>contour</u> Γ is either a single point z_0 or a finite sequence of directed smooth curves $(\gamma_1, \gamma_2, \ldots, \gamma_n)$ such that the terminal point of γ_k coincides with the initial point of γ_{k+1} for each $k = 1, 2, \ldots, n-1$.

 Γ is said to be a <u>closed contour</u> or a <u>loop</u> if its initial and terminal points coincide. A <u>simple closed contour</u> is a closed contour with no multiple points other than its initial-terminal point; in other words, if z = z(t), $a \le t \le b$, is a parametrization of the closed contour, then z(t) is one-to-one on the half-open interval [a, b].

Theorem: A simple closed contour separates the plane into two domains, each having the contour as its boundary. One of these domains, called the "interior", is bounded; the other called the "exterior", is unbounded.

The direction along Γ can be completely specified by declaring its initial-terminal point and stating which domain (interior or exterior) lies to the left, we say that Γ is positively oriented (counterclockwise direction). Otherwise Γ is said to oriented negatively (clockwise direction).

The length of a smooth curve γ : $z = z(t), a \leq t \leq b$.

$$l\left(\gamma\right) = \int_{a}^{b} z'\left(t\right) dt$$

The contour integral.

Consider a function f(z) which is defined over a directed smooth curve γ with initial point α and terminal point β .

For any positive integer n, we define a partition \mathcal{P}_n of γ to be a finite number of points z_0, z_1, \ldots, z_n on γ such that $z_0 = \alpha$, $z_n = \beta$, and z_{k-1} precedes z_k on γ for $k = 1, 2, \ldots, n$. If we compute the arc length along γ between every consecutive pair of points (z_{k-1}, z_k) , the largest of these lengths provide a measure of "fitness" of the subdivision; the maximum length is called the mesh the partition and is denoted by $\mu(\mathcal{P}_n)$.

Now let c_1, c_2, \ldots, c_n be any points of γ such that c_1 lies on the arc from z_0 to z_1, c_2 lies on the arc from z_1 to z_2 , etc. Under these circumstances the sum $S(\mathcal{P}_n)$ defined by

$$S(\mathcal{P}_n) = f(c_1)(z_1 - z_0) + f(c_2)(z_2 - z_1) + \dots + f(c_n)(z_n - z_{n-1})$$

is called Riemann sum for the function f corresponding to the partition \mathcal{P}_n . On writing $z_k - z_{k-1} = \Delta z_k$, this becomes

$$S(\mathcal{P}_n) = \sum_{k=1}^n f(c_k) (z_k - z_{k-1}) = \sum_{k=1}^n f(c_k) \Delta z_k.$$

Definition: Let f(z) be a complex-valued function defined on the directed smooth curve γ . We say that f(z) is integrable along γ If there exist a complex number L which the limit of every sequence of Riemann sums $S(\mathcal{P}_1), S(\mathcal{P}_2), \ldots, S(\mathcal{P}_n), \ldots$ corresponding to any sequence of partitions of γ satisfying $\lim_{n \to \infty} \mu(\mathcal{P}_n) = 0$; i.e.,

$$\lim_{n \to \infty} S(\mathcal{P}_n) = L \text{ whenever } \lim_{n \to \infty} \mu(\mathcal{P}_n) = 0.$$

The constant L is called integral of f(z) along γ , and we write

$$L = \int_{\gamma} f(z) dz$$
 or $L = \int_{\gamma} f(z) dz$.

Theorem: If f(z) is continuous on the directed smooth curve γ , then f(z) is integrable along γ .

Theorem: If the complex-valued function f(t) is continuous on [a, b] and F'(t) = f(t) for all t in [a, b], then

$$\int_{a}^{b} f(t) dt = F(b) - F(a).$$

Theorem: Let f(z) be a function continuous on the directed smooth curve γ . Then if z = z(t), $a \le t \le b$, is any admissible parametrization of γ consistent with its direction, we have

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(z(t)) z'(t) dt \left(= \int_{a}^{b} f(z(t)) \frac{dz}{dt}(t) dt \right).$$

Corollary: If f(z) is continuous on the directed smooth curve γ and if $z = z_1(t)$, $a \leq t \leq b$, and $z = z_2(t)$, $c \leq t \leq d$, are any two admissible parameterizations of γ consistent with its direction, then

$$\int_{a}^{b} f(z_{1}(t)) z'_{1}(t) dt = \int_{c}^{d} f(z_{2}(t)) z'_{2}(t) dt$$

Definition: Suppose that Γ is a contour consisting of the directed smooth curves $(\gamma_1, \gamma_2, \ldots, \gamma_n)$, and let f(z) be a function continuous on Γ . Then the <u>contour integral of f(z) along Γ </u> is denoted by the symbol $\int_{\Gamma} f(z) dz$ and is defined by the equation

$$\int_{\Gamma} f(z) dz = \int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz + \dots + \int_{\gamma_n} f(z) dz$$

Theorem: If f(z) is continuous on the contour Γ and if $|f(z)| \leq M$ for all z on Γ , then

$$\left| \int_{\Gamma} f(z) dz \right| \leq Ml(\Gamma)$$

Theorem: Suppose that the function f(z) is continuous in a domain D and has an antiderivative F(z) throughout D; i.e., dF(z)/dz = f(z) at each z in D(F(z)) is analytic in D). Then for any contour Γ lying in D, with initial point z_I and terminal point z_T , we have

$$\int_{\Gamma} f(z) dz = F(z_T) - F(z_I).$$

Corollary: If f(z) is continuous in a domain D and has an antiderivative F(z) throughout D, then

$$\int_{\Gamma} f(z) \, dz = 0$$

for all loops Γ lying in D.

Definition: A simply connected domain D is a domain having the following property: If Γ is any simple closed contour lying in D, then the domain interior to Γ lies wholly in D.

Theorem (Green's Theorem; Curl Theorem in the Plane): Let $\mathbf{V} = (V_1, V_2)$ be a continuously differentiable vector field defined on a simply connected domain D, and let Γ be a positively oriented simple closed contour in D. Then the line integral of \mathbf{V} around Γ equals the integral of $(\partial V_2/\partial x - \partial V_1/\partial y)$, integrated with respect to area over the domain D' interior to Γ ; i.e.,

$$\int_{\Gamma} \left(V_1 dx + V_2 dy \right) = \iint_{D'} \left(\frac{\partial V_2}{\partial x} - \frac{\partial V_1}{\partial y} \right) dx dy$$

The left hand side of this equation is the work done by the force; $\mathbf{V} = V_1(x, y) + iV_2(x, y)$ traversing the closed contour Γ which is the boundary of the surface D'.

Theorem (Cauchy's Integral Theorem): If f(z) is analytic in a simply connected domain D and Γ is any loop (closed contour) in D, then

$$\int_{\Gamma} f(z) dz = 0.$$

Theorem: In a simply connected domain, an analytic function has an antiderivative, its contour integrals are independent of path, and its loop integrals vanish.

Theorem (Cauchy's Integral Formula): Let Γ be a simple closed positively oriented contour. If f(z) is analytic in some simply connected domain D containing Γ and z_0 is any point inside Γ , then

$$f(z_0) dz = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - z_0} dz.$$

Theorem: Let g be continuous on the contour Γ , and for each z not on Γ set

$$G(z) dz \equiv \int_{\Gamma} \frac{g(\xi)}{\xi - z} d\xi.$$

Then the function G is analytic, and its derivative is given by

$$G'(z) dz = \int_{\Gamma} \frac{g(\xi)}{(\xi - z)^2} d\xi$$

for all z not on Γ .

Theorem: If f is analytic in a domain D, then all its derivatives $f', f'', \ldots, f^{(n)}, \ldots$ exist and are analytic in D.

Theorem: If f = u + iv is analytic in a domain D, then all partial derivatives of u and v exist and are continuous in D.

Theorem (Morera's Theorem): If f(z) is continuous in a domain D and if

$$\int_{\Gamma} f(z) \, dz = 0$$

for every closed contour Γ in D, then f(z) is analytic in D.

Theorem: If f is analytic inside and on the simple closed positively oriented contour Γ and if z is any point inside Γ , then

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi \qquad (n = 1, 2, 3, ...).$$

Another form of this equation

$$\int_{\Gamma} \frac{f(z)}{(z-z_0)^m} dz = \frac{2\pi i f^{(m-1)}(z_0)}{(m-1)!} \qquad (z_0 \text{ inside } \Gamma).$$

The Cauchy's residue theorem and method for calculating residues are quotes from http://math.furman.edu/ dcs/courses/math39/lectures/lecture-45.pdf.

Theorem (Cauchy's Residue Theorem): Suppose C is a positively oriented, simple closed contour. If f is analytic on and inside C except for finite number of singular points z_1, z_2, \ldots, z_n , then

$$\int_{C} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z).$$

Sami Arıca

Page 8 of 13

Let f be a function with a pole of order m at P . Then

$$\operatorname{Res}_{z=P} f(z) = \frac{1}{(m-1)!} \left(\frac{\partial}{\partial z}\right)^{m-1} \left((z-P)^m f(z) \right) \bigg|_{z=P}$$

Partial fraction decomposition.

$$\frac{N(z)}{D(z)} = \frac{N(z)}{\cdots(z-P)^m \cdots} = \cdots + \sum_{\ell=1}^m \frac{A_\ell}{(z-P)^\ell} + \cdots$$
$$A_\ell = \frac{1}{(\ell-1)!} \left(\frac{\partial}{\partial z}\right)^{\ell-1} \left((z-P)^m \frac{N(z)}{D(z)}\right)\Big|_{z=P}$$

$$\begin{array}{rcl} (a+b)^2 &=& a^2+2ab+b^2 \\ (a+b)^3 &=& a^3+3a^2b+3ab^2+b^3 \end{array}$$

$$\begin{array}{rcl} x & = & \frac{z + \bar{z}}{z} \\ y & = & \frac{z - \bar{z}}{2i} \end{array}$$

QUESTIONS

Q1) A simple closed contour; $\Gamma = (\gamma_1, \gamma_2, \gamma_3)$, is given. The sequence of the directed smooth curves of this contour are given below.

$$\begin{array}{rcl} \gamma_1 & : & z_1\left(t\right) = & 1 - t + i\left(3t - 2t^2\right), & 0 \le t \le 1 \\ \gamma_2 & : & z_2\left(t\right) = -t + i\left(1 - t\right), & 0 \le t \le 1 \\ \gamma_3 & : & z_3\left(t\right) = & \cos\left(\pi\left(t + 1\right)\right) + i\sin\left(\pi\left(t + 1\right)\right), & 0 \le t \le 1 \end{array}$$

Obtain a contour parametrization for Γ by employing the techniques of rescaling; rescale so that γ_1 is traced as t varies between 0 and $\frac{1}{3}$, γ_2 is traced for $\frac{1}{3} \leq t \leq \frac{2}{3}$, and γ_3 is traced for $\frac{2}{3} \leq t \leq 1$.

Q2) Compute

$$(e^{z_1} + e^{-z_1}) \cdot (e^{z_2} + e^{-z_2}) + (e^{z_1} - e^{-z_1}) \cdot (e^{z_2} - e^{-z_2})$$

Using the result obtained find the trigonometric identity for $\cosh(z_1 + z_2)$. (a+b)(c+d) + (a-b)(c-d) = 2ac + 2bd.

Q3) Compute

 $(e^{z_1} + e^{-z_1}) \cdot (e^{z_2} - e^{-z_2}) + (e^{z_1} - e^{-z_1}) \cdot (e^{z_2} + e^{-z_2})$

Using the result obtained find the trigonometric identity for $\sinh(z_1 - z_2)$. (a + b)(c - d) + (a - b)(c + d) = 2ac - 2bd.

Q4) Evaluate the following contour integral.

$$\int_{\Gamma} \frac{-2z^2 + z + 3}{z^3} \, dz$$

Q5) In the following circuit AC source; $3\cos(2t - \pi/2)$ Volt is connected for a long time and the responses to this source are at steady state. obtain the steady state voltage $v_o(t)$ on the

inductor.

Q6) A complex function u(x,y) = 2xy is given. Is it is harmonic? If yes, find harmonic conjugate of this function.

Q7) A complex function $u(x,y) = \frac{x}{x^2 + y^2}$ is given. Is it is harmonic? If yes, find harmonic conjugate of this function.

Q8) The complex logarithm function is defined as in the following.

$$z = re^{i\theta}$$

$$\log(z) = \log(r) + \theta + 2\pi k, \qquad k \in \mathbb{Z}$$

A branch of the logarithm is

$$\mathcal{L}_0(z) = \operatorname{Log}(r) + \theta, \quad \text{for } 0 < \theta \le 2\pi.$$

What is the domain that $\mathcal{L}_0(z)$ is analytic. Find $\mathcal{L}_0(1+i0^+)$, and $\mathcal{L}_0(1+i0^-)$. Obtain $\frac{d}{dz}\mathcal{L}_0(z)$.

Q9) Two vectors fields; $\mathbf{V}(x, y) = (-y, x)$, and $\mathbf{V}(x, y) = (-y^2, xy)$ are given. For each of the vector field and the following contours test Green's theorem.

Q10) Find the singularities and the residues of the following complex function.

$$f(z) = (2+i)z^2 - 3iz + 1 - 2i + \frac{1-i}{z-2i} + \frac{1+i}{z+2i} - \frac{3}{(z+2)^2} + \frac{2}{z+2i}$$

Q11) Compute the following integral along the simple closed contour Γ traversed once counter clockwise direction.

$$\int_{\Gamma} \frac{1 - \cos\left(z\right)}{z \left(z + i\right)^2} \, dz$$

Q12) Evaluate the following integral along the simple closed contour Γ traversed once counter clockwise direction.

$$\int_{\Gamma} \frac{e^z \sin^2\left(z\right)}{z\left(z^2 + 4\right)} dz$$

