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Complex Analysis

Parametric interval Curve

0 ≤ t ≤ 1 z (t)

0 ≤ t ≤ α → 0 ≤ t

α
≤ 1 z

(

t

α

)

a ≤ t ≤ a+ α → 0 ≤ t− a ≤ α z

(

t− a

α

)

0 ≤ t− a

α
≤ 1

z = z (t) → γ a ≤ t ≤ b

z = z (−t) → −γ −b ≤ t ≤ −a

Γ = ( γ1, γ2, . . . , γn−1, γn ) a ≤ t ≤ b

−Γ = (−γn, −γn−1, . . . , −γ2, −γ1) −b ≤ t ≤ −a

Sum of two trigonometric functions can be obtained by using complex exponentials (phasors).
Consider sum of two cosines. Real part of an complex exponential is a cosine. Therefore real
part of sum of complex exponentials corresponding to these cosines provide the sum of the two
cosines.

A cos (θ) +B cos (θ + β) = C cos (θ + α)

Aeiθ +Bei(θ+β) = Cei(θ+α)

eiθ
(

A+Beiβ
)

= Ceiα eiθ

A+Beiβ = Ceiα

α
β

A

Beiβ
Ceiα
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Example : Find 3 cos (θ) + 4 sin (θ).

3 + 4e−iπ/2 = 3− 4i = 5e−i0.93

3 cos (θ) + 4 sin (θ) = 5 cos (θ − 0.93)

Example :
In the following circuit (upper circuit) AC source; 2 cos (t) is connected for a long time and the
responses to this source are at steady state. Since cos (t) = Re

[

eit
]

, the voltage on capacitor
for AC source is real part of the output on the capacitor for the complex exponential source;

vo (t) = Re
[

Voe
iθeit

]

(middle circuit). The voltage-current ratio (impedance) of the R and

C for the exponential excitation are constant and 1Ω and −i
√
3Ω respectively. Consequently

the circuit is reduced to a DC resistance circuit (lower circuit). The circuit is a simple voltage

divider and the capacitor voltage is Voe
iθ =

2

1− i
√
3
·
(

−i
√
3
)

. Using this methodology the

steady state voltage vo (t) on the capacitor can be easily obtained.

Voe
iθ =

2

1− i
√
3
·
(

−i
√
3
)

= 2
−i

√
3
(

3− i
√
3
)

1 + 3

=
1

2

(

−i
√
3 + 3

)

=
√
3e−iπ/6

vo (t) = Re
[

Voe
iθeit

]

= Re
[√

3e−iπ/6eit
]

= Re
[√

3ei(t−π/6)
]

=
√
3 cos (t− π/6) Volt
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−
+

2cos (t)

1Ω

1√
3
F vo (t)

−
+

2eit

1Ω

1√
3
F Voe

i(t+θ) = Voe
iθeit

−
+

2

1Ω

−i
√
3F Voe

iθ

A list of definitions and theorems from the textbook ”Fundamentals of Complex Analysis for
Mathematics, Science and Engineering” by E. B. Saff and A. D. Snider.

Definition: Let f (z) be a function defined in the neighborhood of z0. Then f (z) is continuous
at z0 if

lim
z→z0

f (z) = f (z0) .

Definition: Let f (z) be a complex-valued function defined in the neighborhood of z0. Then the
derivative of f (z) at z0 is given by

f ′ (z0) = lim
∆z→0

f (z0 +∆z)− f (z)

∆z
,
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provided this limit exists.

Definition: A complex-valued function f (z) is said to be analytic on an open set G if it has a
derivative at every point of G.

Theorem: Let f (z) = u (x, y) + iv (x, y) be defined in some open set G. If the first partial
derivatives of u and v are continuous and satisfy the Cauchy-Riemann equations at all points
of G, then f (z) is analytic in G.

Definition: A real-valued function φ (x, y) is said to be harmonic in a domain D if all its second-
order partial derivatives are continuous in D and if at each point of D, φ satisfies

∂2φ

∂x2
+

∂2φ

∂y2
= 0.

Theorem: If f (z) = u (x, y) + iv (x, y) is analytic in a domain D, then each of the functions
u (x, y) and v (x, y)are harmonic in D.

De Moivre’s formula

[ r cos (θ) + i r sin (θ) ]n = rn cos (nθ) + i rn sin (nθ)

Elementary functions.

The complex exponential function.
Definition: If z = x+ iy, then ez is defined to be a complex number

ez = ex (cos (y) + i sin (y)) .

Definition: Given any complex number z, we define

sin (z) =
eiz − e−iz

2i
, cos (z) =

eiz + e−iz

2
.

Definition: For any complex number z we define

sinh (z) =
ez − e−z

2
, cosh (z) =

ez + e−z

2
.

The logarithmic function.
Definition: If z 6= 0, then we define log (z) to any of the infinitely many values

log (z) = Log (|z|) + i (θ + 2πk) , k ∈ Z,

where θ denotes a particular value of arg (z).
The branch of the logarithm for k = 0 is called the principal value of log (z) and we refer it as
the principal value of log (z). We denote this function by Log (z), i.e.,

Log (z) = Log (|z|) + iArg (z) .

Definition: If α is a complex constant and z 6= 0, then we define zα by

zα = eα log(z)
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If α is not a real rational number, we obtain infinitely many different values for zα. On the
other hand, if α = m/n where m and n > 0 are integers having no common factor, then n
distinct values of zm/n, namely

zm/n = e(m/n)Log(|z|)ei(m/n)(Arg(z)+2πk) (k = 0, 1, . . . , n − 1) .

Definition: A point set γ in the complex plane is said to be a smooth arc if it is the range of
some continuous complex-valued function z = z (t), a ≤ t ≤ b, which satisfies the following
conditions:

(i) z (t) has a continuous derivative on [a, b],

(ii) z′ (t) never vanishes on [a, b],

(iii) z (t) is one-to-one on [a, b].

A point set γ is called a smooth closed curve if it is the range of continuous function z = z (t),
a ≤ t ≤ b, satisfying conditions (i) and (ii) above and the following:

(iii)′ z (t) is one-to-one on the half-open interval [a, b), but z (b) = z (a) and z′ (b) = z′ (a).

The phrase ”γ is a smooth curve” means that γ is either a smooth arc or a smooth closed curve.

Definition: A contour Γ is either a single point z0 or a finite sequence of directed smooth curves
(γ1, γ2, . . . , γn) such that the terminal point of γk coincides with the initial point of γk+1 for
each k = 1, 2, . . . , n− 1.

Γ is said to be a closed contour or a loop if its initial and terminal points coincide. A
simple closed contour is a closed contour with no multiple points other than its initial-terminal
point; in other words, if z = z (t), a ≤ t ≤ b, is a parametrization of the closed contour, then
z (t) is one-to-one on the half-open interval [a, b).

Theorem: A simple closed contour separates the plane into two domains, each having the con-
tour as its boundary. One of these domains, called the ”interior”, is bounded; the other called
the ”exterior”, is unbounded.

The direction along Γ can be completely specified by declaring its initial-terminal point and
stating which domain (interior or exterior) lies to the left, we say that Γ is positively oriented
(counterclockwise direction). Otherwise Γ is said to oriented negatively (clockwise direction).

The length of a smooth curve γ : z = z (t), a ≤ t ≤ b.

l (γ) =

b
ˆ

a

z′ (t) dt

The contour integral.

Consider a function f (z) which is defined over a directed smooth curve γ with initial point α
and terminal point β.
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For any positive integer n, we define a partition Pn of γ to be a finite number of points
z0, z1, . . . , zn on γ such that z0 = α, zn = β, and zk−1 precedes zk on γ for k = 1, 2, . . . , n.
If we compute the arc length along γ between every consecutive pair of points (zk−1, zk), the
largest of these lengths provide a measure of ”fitness” of the subdivision; the maximum length
is called the mesh the partition and is denoted by µ (Pn).
Now let c1, c2, . . . , cn be any points of γ such that c1 lies on the arc from z0 to z1, c2 lies on the
arc from z1 to z2, etc. Under these circumstances the sum S (Pn) defined by

S (Pn) = f (c1) (z1 − z0) + f (c2) (z2 − z1) + · · · + f (cn) (zn − zn−1)

is called Riemann sum for the function f corresponding to the partition Pn. On writing zk −
zk−1 = ∆zk, this becomes

S (Pn) =

n
∑

k=1

f (ck) (zk − zk−1) =

n
∑

k=1

f (ck)∆zk.

Definition: Let f (z) be a complex-valued function defined on the directed smooth curve γ.
We say that f (z) is integrable along γ If there exist a complex number L which the limit of
every sequence of Riemann sums S (P1) , S (P2) , . . . , S (Pn) , . . . corresponding to any sequence
of partitions of γ satisfying lim

n→∞
µ (Pn) = 0; i.e.,

lim
n→∞

S (Pn) = L whenever lim
n→∞

µ (Pn) = 0.

The constant L is called integral of f (z) along γ, and we write

L =

ˆ

γ
f (z) dz or L =

ˆ

γ
f.

Theorem: If f (z) is continuous on the directed smooth curve γ, then f (z) is integrable along
γ.

Theorem: If the complex-valued function f (t) is continuous on [a, b] and F ′ (t) = f (t) for all t
in [a, b], then

b
ˆ

a

f (t) dt = F (b)− F (a) .

Theorem: Let f (z) be a function continuous on the directed smooth curve γ. Then if z = z (t),
a ≤ t ≤ b, is any admissible parametrization of γ consistent with its direction, we have

ˆ

γ
f (z) dz =

b
ˆ

a

f (z (t)) z′ (t) dt



=

b
ˆ

a

f (z (t))
dz

dt
(t) dt



 .

Corollary: If f (z) is continuous on the directed smooth curve γ and if z = z1 (t), a ≤ t ≤ b,
and z = z2 (t), c ≤ t ≤ d, are any two admissible parameterizations of γ consistent with its
direction, then

b
ˆ

a

f (z1 (t)) z
′
1 (t) dt =

d
ˆ

c

f (z2 (t)) z
′
2 (t) dt.
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Definition: Suppose that Γ is a contour consisting of the directed smooth curves (γ1, γ2, . . . , γn),
and let f (z) be a function continuous on Γ. Then the contour integral of f (z) along Γ is

denoted by the symbol

ˆ

Γ
f (z) dz and is defined by the equation

ˆ

Γ
f (z) dz =

ˆ

γ1

f (z) dz +

ˆ

γ2

f (z) dz + · · ·+
ˆ

γn

f (z) dz.

Theorem: If f (z) is continuous on the contour Γ and if |f (z)| ≤ M for all z on Γ, then

∣

∣

∣

∣

ˆ

Γ
f (z) dz

∣

∣

∣

∣

≤ Ml (Γ) .

Theorem: Suppose that the function f (z) is continuous in a domain D and has an antiderivative
F (z) throughout D; i.e., dF (z) /dz = f (z) at each z in D (F (z) is analytic in D). Then for
any contour Γ lying in D, with initial point zI and terminal point zT , we have

ˆ

Γ
f (z) dz = F (zT )− F (zI) .

Corollary: If f (z) is continuous in a domain D and has an antiderivative F (z) throughout D,
then

ˆ

Γ
f (z) dz = 0

for all loops Γ lying in D.

Definition: A simply connected domain D is a domain having the following property: If Γ is
any simple closed contour lying in D, then the domain interior to Γ lies wholly in D.

Theorem (Green’s Theorem; Curl Theorem in the Plane): Let V = (V1, V2) be a continuously
differentiable vector field defined on a simply connected domain D, and let Γ be a positively
oriented simple closed contour in D. Then the line integral of V around Γ equals the integral
of (∂V2/∂x− ∂V1/∂y), integrated with respect to area over the domain D′ interior to Γ; i.e.,

ˆ

Γ
(V1dx+ V2dy) =

¨

D′

(

∂V2

dx
− ∂V1

dy

)

dxdy.

The left hand side of this equation is the work done by the force; V = V1 (x, y) + iV2 (x, y)
traversing the closed contour Γ which is the boundary of the surface D′.

Theorem (Cauchy’s Integral Theorem): If f (z) is analytic in a simply connected domain D and
Γ is any loop (closed contour)in D, then

ˆ

Γ
f (z) dz = 0.

Theorem: In a simply connected domain, an analytic function has an antiderivative, its contour
integrals are independent of path, and its loop integrals vanish.
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Theorem (Cauchy’s Integral Formula): Let Γ be a simple closed positively oriented contour. If
f (z) is analytic in some simply connected domain D containing Γ and z0 is any point inside Γ,
then

f (z0) dz =
1

2πi

ˆ

Γ

f (z)

z − z0
dz.

Theorem: Let g be continuous on the contour Γ, and for each z not on Γ set

G (z) dz ≡
ˆ

Γ

g (ξ)

ξ − z
dξ.

Then the function G is analytic, and its derivative is given by

G′ (z) dz =

ˆ

Γ

g (ξ)

(ξ − z)2
dξ

for all z not on Γ.

Theorem: If f is analytic in a domain D, then all its derivatives f ′, f ′′, . . . , f (n), . . . exist and
are analytic in D.

Theorem: If f = u+ iv is analytic in a domain D, then all partial derivatives of u and v exist
and are continuous in D.

Theorem (Morera’s Theorem): If f (z) is continuous in a domain D and if

ˆ

Γ
f (z) dz = 0

for every closed contour Γ in D, then f (z) is analytic in D.

Theorem: If f is analytic inside and on the simple closed positively oriented contour Γ and if z
is any point inside Γ, then

f (n) (z) =
n!

2πi

ˆ

Γ

f (ξ)

(ξ − z)n+1dξ (n = 1, 2, 3, . . .) .

Another form of this equation

ˆ

Γ

f (z)

(z − z0)
m dz =

2πif (m−1) (z0)

(m− 1)!
(z0 inside Γ).

The Cauchy’s residue theorem and method for calculating residues are quotes from
http://math.furman.edu/ dcs/courses/math39/lectures/lecture-45.pdf.

Theorem (Cauchy’s Residue Theorem): Suppose C is a positively oriented, simple closed con-
tour. If f is analytic on and inside C except for finite number of singular points z1, z2, . . . , zn ,
then

ˆ

C
f (z) dz = 2πi

n
∑

k=1

Res
z=zk

f (z) .
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Method for calculating residues.
Let f be a function with a pole of order m at P . Then

Res
z=P

f (z) =
1

(m− 1)!

(

∂

∂z

)m−1

((z − P )m f (z))

∣

∣

∣

∣

∣

z=P

Partial fraction decomposition.

N (z)

D (z)
=

N (z)

· · · (z − P )m · · · = · · · +
m
∑

ℓ=1

Aℓ

(z − P )ℓ
+ · · ·

Aℓ =
1

(ℓ− 1)!

(

∂

∂z

)ℓ−1 (

(z − P )m
N (z)

D (z)

)

∣

∣

∣

∣

∣

z=P

(a+ b)2 = a2 + 2ab+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

x =
z + z̄

2

y =
z − z̄

2i
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QUESTIONS

Q1) A simple closed contour; Γ = (γ1, γ2, γ3 ), is given. The sequence of the directed smooth
curves of this contour are given below.

γ1 : z1 (t) = 1− t+ i
(

3t− 2t2
)

, 0 ≤ t ≤ 1
γ2 : z2 (t) = −t+ i (1− t) , 0 ≤ t ≤ 1
γ3 : z3 (t) = cos (π (t+ 1)) + i sin (π (t+ 1)) , 0 ≤ t ≤ 1

Obtain a contour parametrization for Γ by employing the techniques of rescaling; rescale so

that γ1 is traced as t varies between 0 and
1

3
, γ2 is traced for

1

3
≤ t ≤ 2

3
, and γ3 is traced for

2

3
≤ t ≤ 1.

x

y

γ1

γ2

γ3

Q1

Q2) Compute

(

ez1 + e−z1
)

·
(

ez2 + e−z2
)

+
(

ez1 − e−z1
)

·
(

ez2 − e−z2
)

Using the result obtained find the trigonometric identity for cosh (z1 + z2).
(a+ b) (c+ d) + (a− b) (c− d) = 2ac+ 2bd.

Q3) Compute

(

ez1 + e−z1
)

·
(

ez2 − e−z2
)

+
(

ez1 − e−z1
)

·
(

ez2 + e−z2
)

Using the result obtained find the trigonometric identity for sinh (z1 − z2).
(a+ b) (c− d) + (a− b) (c+ d) = 2ac− 2bd.

Q4) Evaluate the following contour integral.

ˆ

Γ

−2z2 + z + 3

z3
dz

Q5) In the following circuit AC source; 3 cos (2t− π/2) Volt is connected for a long time and
the responses to this source are at steady state. obtain the steady state voltage vo (t) on the
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Γ
x

y

Q4

−
+

3cos (2t− π/2)

1Ω

√
3

2
H vo (t)

Q5

inductor.

Q6) A complex function u (x, y) = 2xy is given. Is it is harmonic? If yes, find harmonic conju-
gate of this function.

Q7) A complex function u (x, y) =
x

x2 + y2
is given. Is it is harmonic? If yes, find harmonic

conjugate of this function.

Q8) The complex logarithm function is defined as in the following.

z = reiθ

log (z) = Log (r) + θ + 2πk, k ∈ Z

A branch of the logarithm is

L0 (z) = Log (r) + θ, for 0 < θ ≤ 2π.

What is the domain that L0 (z) is analytic. Find L0

(

1 + i 0+
)

, and L0

(

1 + i 0−
)

. Obtain
d

dz
L0 (z).
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Q9) Two vectors fields; V (x, y) = (−y, x), and V (x, y) =
(

−y2, xy
)

are given. For each of the
vector field and the following contours test Green’s theorem.

1

1

−1

−1
x

y

Γ

1

1

−1

−1
x

y

Γ

Q9

Q10) Find the singularities and the residues of the following complex function.

f (z) = (2 + i) z2 − 3iz + 1− 2i+
1− i

z − 2i
+

1 + i

z + 2i
− 3

(z + 2)2
+

2

z + 2

Q11) Compute the following integral along the simple closed contour Γ traversed once counter
clockwise direction.

ˆ

Γ

1− cos (z)

z (z + i)2
dz

1

−1

−2

1−1−2

Γ

x

y

Q11

Q12) Evaluate the following integral along the simple closed contour Γ traversed once counter
clockwise direction.

ˆ

Γ

ez sin2 (z)

z (z2 + 4)
dz
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1

2

−1

1−1−2

Γ

x

y

Q12
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