Complex Analysis

Parametric interval

Curve

$$
\begin{array}{llll}
0 \leq t \leq 1 & & z(t) \\
0 \leq t \leq \alpha & & \rightarrow & 0 \leq \frac{t}{\alpha} \leq 1 \\
a \leq t \leq a+\alpha & & \rightarrow & z\left(\frac{t}{\alpha}\right) \\
a \leq t-a \leq \alpha & z\left(\frac{t-a}{\alpha}\right) \\
& & 0 \leq \frac{t-a}{\alpha} \leq 1 & \\
z=z(t) & \rightarrow & \gamma & a \leq t \leq b \\
z=z(-t) & \rightarrow & -\gamma & -b \leq t \leq-a
\end{array}
$$

$$
\Gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n-1}, \gamma_{n}\right) \quad a \leq t \leq b
$$

$$
-\Gamma=\left(-\gamma_{n},-\gamma_{n-1}, \ldots,-\gamma_{2},-\gamma_{1}\right) \quad-b \leq t \leq-a
$$

Sum of two trigonometric functions can be obtained by using complex exponentials (phasors). Consider sum of two cosines. Real part of an complex exponential is a cosine. Therefore real part of sum of complex exponentials corresponding to these cosines provide the sum of the two cosines.

$$
\begin{array}{ll}
A \cos (\theta)+B \cos (\theta+\beta) & =C \cos (\theta+\alpha) \\
A e^{i \theta}+B e^{i(\theta+\beta)} & =C e^{i(\theta+\alpha)} \\
e^{i \theta}\left(A+B e^{i \beta}\right) & =C e^{i \alpha} e^{i \theta} \\
A+B e^{i \beta} & =C e^{i \alpha}
\end{array}
$$

Example : Find $3 \cos (\theta)+4 \sin (\theta)$.

$$
\begin{array}{ll}
3+4 e^{-i \pi / 2} & =3-4 i \\
3 \cos (\theta)+4 \sin (\theta) & =5 \cos (\theta-0.93)
\end{array}
$$

Example :
In the following circuit (upper circuit) AC source; $2 \cos (t)$ is connected for a long time and the responses to this source are at steady state. Since $\cos (t)=\operatorname{Re}\left[e^{i t}\right]$, the voltage on capacitor for AC source is real part of the output on the capacitor for the complex exponential source; $v_{o}(t)=\operatorname{Re}\left[V_{o} e^{i \theta} e^{i t}\right]$ (middle circuit). The voltage-current ratio (impedance) of the R and C for the exponential excitation are constant and 1Ω and $-i \sqrt{3} \Omega$ respectively. Consequently the circuit is reduced to a DC resistance circuit (lower circuit). The circuit is a simple voltage divider and the capacitor voltage is $V_{o} e^{i \theta}=\frac{2}{1-i \sqrt{3}} \cdot(-i \sqrt{3})$. Using this methodology the steady state voltage $v_{o}(t)$ on the capacitor can be easily obtained.

$$
\begin{aligned}
& V_{o} e^{i \theta}=\frac{2}{1-i \sqrt{3}} \cdot(-i \sqrt{3})=2 \frac{-i \sqrt{3}(3-i \sqrt{3})}{1+3} \\
& =\frac{1}{2}(-i \sqrt{3}+3)=\sqrt{3} e^{-i \pi / 6} \\
& v_{o}(t)=\operatorname{Re}\left[V_{o} e^{i \theta} e^{i t}\right]=\operatorname{Re}\left[\sqrt{3} e^{-i \pi / 6} e^{i t}\right] \\
& =\operatorname{Re}\left[\sqrt{3} e^{i(t-\pi / 6)}\right]=\sqrt{3} \cos (t-\pi / 6) \text { Volt }
\end{aligned}
$$

A list of definitions and theorems from the textbook "Fundamentals of Complex Analysis for Mathematics, Science and Engineering" by E. B. Saff and A. D. Snider.

Definition: Let $f(z)$ be a function defined in the neighborhood of z_{0}. Then $f(z)$ is continuous at z_{0} if

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right) .
$$

Definition: Let $f(z)$ be a complex-valued function defined in the neighborhood of z_{0}. Then the derivative of $f(z)$ at z_{0} is given by

$$
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f(z)}{\Delta z}
$$

provided this limit exists.
Definition: A complex-valued function $f(z)$ is said to be analytic on an open set G if it has a derivative at every point of G.

Theorem: Let $f(z)=u(x, y)+i v(x, y)$ be defined in some open set G. If the first partial derivatives of u and v are continuous and satisfy the Cauchy-Riemann equations at all points of G, then $f(z)$ is analytic in G.

Definition: A real-valued function $\phi(x, y)$ is said to be harmonic in a domain D if all its secondorder partial derivatives are continuous in D and if at each point of D, ϕ satisfies

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0 .
$$

Theorem: If $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D, then each of the functions $u(x, y)$ and $v(x, y)$ are harmonic in D.

De Moivre's formula

$$
[r \cos (\theta)+i r \sin (\theta)]^{n}=r^{n} \cos (n \theta)+i r^{n} \sin (n \theta)
$$

Elementary functions.
The complex exponential function.
Definition: If $z=x+i y$, then e^{z} is defined to be a complex number

$$
e^{z}=e^{x}(\cos (y)+i \sin (y)) .
$$

Definition: Given any complex number z, we define

$$
\sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}, \quad \cos (z)=\frac{e^{i z}+e^{-i z}}{2} .
$$

Definition: For any complex number z we define

$$
\sinh (z)=\frac{e^{z}-e^{-z}}{2}, \quad \cosh (z)=\frac{e^{z}+e^{-z}}{2} .
$$

The logarithmic function.
Definition: If $z \neq 0$, then we define $\log (z)$ to any of the infinitely many values

$$
\log (z)=\log (|z|)+i(\theta+2 \pi k), \quad k \in \mathbb{Z},
$$

where θ denotes a particular value of $\arg (z)$.
The branch of the logarithm for $k=0$ is called the principal value of $\log (z)$ and we refer it as the principal value of $\log (z)$. We denote this function by $\log (z)$, i.e.,

$$
\log (z)=\log (|z|)+i \operatorname{Arg}(z)
$$

Definition: If α is a complex constant and $z \neq 0$, then we define z^{α} by

$$
z^{\alpha}=e^{\alpha \log (z)}
$$

If α is not a real rational number, we obtain infinitely many different values for z^{α}. On the other hand, if $\alpha=m / n$ where m and $n>0$ are integers having no common factor, then n distinct values of $z^{m / n}$, namely

$$
z^{m / n}=e^{(m / n) \log (|z|)} e^{i(m / n)(\operatorname{Arg}(z)+2 \pi k)} \quad(k=0,1, \ldots, n-1) .
$$

Definition: A point set γ in the complex plane is said to be a smooth arc if it is the range of some continuous complex-valued function $z=z(t), a \leq t \leq b$, which satisfies the following conditions:
(i) $z(t)$ has a continuous derivative on $[a, b]$,
(ii) $z^{\prime}(t)$ never vanishes on $[a, b]$,
(iii) $z(t)$ is one-to-one on $[a, b]$.

A point set γ is called a smooth closed curve if it is the range of continuous function $z=z(t)$, $a \leq t \leq b$, satisfying conditions (i) and (ii) above and the following:
(iii) $z^{\prime}(t)$ is one-to-one on the half-open interval $[a, b)$, but $z(b)=z(a)$ and $z^{\prime}(b)=z^{\prime}(a)$.

The phrase " γ is a smooth curve" means that γ is either a smooth arc or a smooth closed curve.
Definition: A contour Γ is either a single point z_{0} or a finite sequence of directed smooth curves $\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$ such that the terminal point of γ_{k} coincides with the initial point of γ_{k+1} for each $k=1,2, \ldots, n-1$.
Γ is said to be a closed contour or a loop if its initial and terminal points coincide. A simple closed contour is a closed contour with no multiple points other than its initial-terminal point; in other words, if $z=z(t), a \leq t \leq b$, is a parametrization of the closed contour, then $z(t)$ is one-to-one on the half-open interval $[a, b)$.

Theorem: A simple closed contour separates the plane into two domains, each having the contour as its boundary. One of these domains, called the "interior", is bounded; the other called the "exterior", is unbounded.

The direction along Γ can be completely specified by declaring its initial-terminal point and stating which domain (interior or exterior) lies to the left, we say that Γ is positively oriented (counterclockwise direction). Otherwise Γ is said to oriented negatively (clockwise direction).

The length of a smooth curve $\gamma: z=z(t), a \leq t \leq b$.

$$
l(\gamma)=\int_{a}^{b} z^{\prime}(t) d t
$$

The contour integral.
Consider a function $f(z)$ which is defined over a directed smooth curve γ with initial point α and terminal point β.

For any positive integer n, we define a partition \mathcal{P}_{n} of γ to be a finite number of points $z_{0}, z_{1}, \ldots, z_{n}$ on γ such that $z_{0}=\alpha, z_{n}=\beta$, and z_{k-1} precedes z_{k} on γ for $k=1,2, \ldots, n$. If we compute the arc length along γ between every consecutive pair of points $\left(z_{k-1}, z_{k}\right)$, the largest of these lengths provide a measure of "fitness" of the subdivision; the maximum length is called the mesh the partition and is denoted by $\mu\left(\mathcal{P}_{n}\right)$.
Now let $c_{1}, c_{2}, \ldots, c_{n}$ be any points of γ such that c_{1} lies on the arc from z_{0} to z_{1}, c_{2} lies on the arc from z_{1} to z_{2}, etc. Under these circumstances the $\operatorname{sum} S\left(\mathcal{P}_{n}\right)$ defined by

$$
S\left(\mathcal{P}_{n}\right)=f\left(c_{1}\right)\left(z_{1}-z_{0}\right)+f\left(c_{2}\right)\left(z_{2}-z_{1}\right)+\cdots+f\left(c_{n}\right)\left(z_{n}-z_{n-1}\right)
$$

is called Riemann sum for the function f corresponding to the partition \mathcal{P}_{n}. On writing $z_{k}-$ $z_{k-1}=\Delta z_{k}$, this becomes

$$
S\left(\mathcal{P}_{n}\right)=\sum_{k=1}^{n} f\left(c_{k}\right)\left(z_{k}-z_{k-1}\right)=\sum_{k=1}^{n} f\left(c_{k}\right) \Delta z_{k}
$$

Definition: Let $f(z)$ be a complex-valued function defined on the directed smooth curve γ. We say that $f(z)$ is integrable along γ If there exist a complex number L which the limit of every sequence of Riemann sums $S\left(\mathcal{P}_{1}\right), S\left(\mathcal{P}_{2}\right), \ldots, S\left(\mathcal{P}_{n}\right), \ldots$ corresponding to any sequence of partitions of γ satisfying $\lim _{n \rightarrow \infty} \mu\left(\mathcal{P}_{n}\right)=0$; i.e.,

$$
\lim _{n \rightarrow \infty} S\left(\mathcal{P}_{n}\right)=L \text { whenever } \lim _{n \rightarrow \infty} \mu\left(\mathcal{P}_{n}\right)=0
$$

The constant L is called integral of $f(z)$ along γ, and we write

$$
L=\int_{\gamma} f(z) d z \text { or } L=\int_{\gamma} f
$$

Theorem: If $f(z)$ is continuous on the directed smooth curve γ, then $f(z)$ is integrable along γ.

Theorem: If the complex-valued function $f(t)$ is continuous on $[a, b]$ and $F^{\prime}(t)=f(t)$ for all t in $[a, b]$, then

$$
\int_{a}^{b} f(t) d t=F(b)-F(a) .
$$

Theorem: Let $f(z)$ be a function continuous on the directed smooth curve γ. Then if $z=z(t)$, $a \leq t \leq b$, is any admissible parametrization of γ consistent with its direction, we have

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t\left(=\int_{a}^{b} f(z(t)) \frac{d z}{d t}(t) d t\right)
$$

Corollary: If $f(z)$ is continuous on the directed smooth curve γ and if $z=z_{1}(t), a \leq t \leq b$, and $z=z_{2}(t), c \leq t \leq d$, are any two admissible parameterizations of γ consistent with its direction, then

$$
\int_{a}^{b} f\left(z_{1}(t)\right) z_{1}^{\prime}(t) d t=\int_{c}^{d} f\left(z_{2}(t)\right) z_{2}^{\prime}(t) d t
$$

Definition: Suppose that Γ is a contour consisting of the directed smooth curves $\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$, and let $f(z)$ be a function continuous on Γ. Then the contour integral of $f(z)$ along Γ is denoted by the symbol $\int_{\Gamma} f(z) d z$ and is defined by the equation

$$
\int_{\Gamma} f(z) d z=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{2}} f(z) d z+\cdots+\int_{\gamma_{n}} f(z) d z
$$

Theorem: If $f(z)$ is continuous on the contour Γ and if $|f(z)| \leq M$ for all z on Γ, then

$$
\left|\int_{\Gamma} f(z) d z\right| \leq M l(\Gamma)
$$

Theorem: Suppose that the function $f(z)$ is continuous in a domain D and has an antiderivative $F(z)$ throughout D; i.e., $d F(z) / d z=f(z)$ at each z in $D(F(z)$ is analytic in $D)$. Then for any contour Γ lying in D, with initial point z_{I} and terminal point z_{T}, we have

$$
\int_{\Gamma} f(z) d z=F\left(z_{T}\right)-F\left(z_{I}\right)
$$

Corollary: If $f(z)$ is continuous in a domain D and has an antiderivative $F(z)$ throughout D, then

$$
\int_{\Gamma} f(z) d z=0
$$

for all loops Γ lying in D.

Definition: A simply connected domain D is a domain having the following property: If Γ is any simple closed contour lying in D, then the domain interior to Γ lies wholly in D.

Theorem (Green's Theorem; Curl Theorem in the Plane): Let $\mathbf{V}=\left(V_{1}, V_{2}\right)$ be a continuously differentiable vector field defined on a simply connected domain D, and let Γ be a positively oriented simple closed contour in D. Then the line integral of \mathbf{V} around Γ equals the integral of $\left(\partial V_{2} / \partial x-\partial V_{1} / \partial y\right)$, integrated with respect to area over the domain D^{\prime} interior to Γ; i.e.,

$$
\int_{\Gamma}\left(V_{1} d x+V_{2} d y\right)=\iint_{D^{\prime}}\left(\frac{\partial V_{2}}{d x}-\frac{\partial V_{1}}{d y}\right) d x d y
$$

The left hand side of this equation is the work done by the force; $\mathbf{V}=V_{1}(x, y)+i V_{2}(x, y)$ traversing the closed contour Γ which is the boundary of the surface D^{\prime}.

Theorem (Cauchy's Integral Theorem): If $f(z)$ is analytic in a simply connected domain D and Γ is any loop (closed contour)in D, then

$$
\int_{\Gamma} f(z) d z=0
$$

Theorem: In a simply connected domain, an analytic function has an antiderivative, its contour integrals are independent of path, and its loop integrals vanish.

Theorem (Cauchy's Integral Formula): Let Γ be a simple closed positively oriented contour. If $f(z)$ is analytic in some simply connected domain D containing Γ and z_{0} is any point inside Γ, then

$$
f\left(z_{0}\right) d z=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(z)}{z-z_{0}} d z
$$

Theorem: Let g be continuous on the contour Γ, and for each z not on Γ set

$$
G(z) d z \equiv \int_{\Gamma} \frac{g(\xi)}{\xi-z} d \xi
$$

Then the function G is analytic, and its derivative is given by

$$
G^{\prime}(z) d z=\int_{\Gamma} \frac{g(\xi)}{(\xi-z)^{2}} d \xi
$$

for all z not on Γ.
Theorem: If f is analytic in a domain D, then all its derivatives $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}, \ldots$ exist and are analytic in D.

Theorem: If $f=u+i v$ is analytic in a domain D, then all partial derivatives of u and v exist and are continuous in D.

Theorem (Morera's Theorem): If $f(z)$ is continuous in a domain D and if

$$
\int_{\Gamma} f(z) d z=0
$$

for every closed contour Γ in D, then $f(z)$ is analytic in D.

Theorem: If f is analytic inside and on the simple closed positively oriented contour Γ and if z is any point inside Γ, then

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{\Gamma} \frac{f(\xi)}{(\xi-z)^{n+1}} d \xi \quad(n=1,2,3, \ldots)
$$

Another form of this equation

$$
\int_{\Gamma} \frac{f(z)}{\left(z-z_{0}\right)^{m}} d z=\frac{2 \pi i f^{(m-1)}\left(z_{0}\right)}{(m-1)!} \quad\left(z_{0} \text { inside } \Gamma\right)
$$

The Cauchy's residue theorem and method for calculating residues are quotes from http://math.furman.edu/ dcs/courses/math39/lectures/lecture-45.pdf.

Theorem (Cauchy's Residue Theorem): Suppose C is a positively oriented, simple closed contour. If f is analytic on and inside C except for finite number of singular points $z_{1}, z_{2}, \ldots, z_{n}$, then

$$
\int_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)
$$

Method for calculating residues.
Let f be a function with a pole of order m at P. Then

$$
\operatorname{Res}_{z=P} f(z)=\left.\frac{1}{(m-1)!}\left(\frac{\partial}{\partial z}\right)^{m-1}\left((z-P)^{m} f(z)\right)\right|_{z=P}
$$

Partial fraction decomposition.

$$
\begin{aligned}
\frac{N(z)}{D(z)} & =\frac{N(z)}{\cdots(z-P)^{m} \cdots}=\cdots+\sum_{\ell=1}^{m} \frac{A_{\ell}}{(z-P)^{\ell}}+\cdots \\
A_{\ell} & =\left.\frac{1}{(\ell-1)!}\left(\frac{\partial}{\partial z}\right)^{\ell-1}\left((z-P)^{m} \frac{N(z)}{D(z)}\right)\right|_{z=P}
\end{aligned}
$$

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& x=\frac{z+\bar{z}}{2} \\
& y=\frac{z-\bar{z}}{2 i}
\end{aligned}
$$

QUESTIONS

Q1) A simple closed contour; $\Gamma=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$, is given. The sequence of the directed smooth curves of this contour are given below.

$$
\begin{array}{lll}
\gamma_{1}: z_{1}(t)=1-t+i\left(3 t-2 t^{2}\right), & 0 \leq t \leq 1 \\
\gamma_{2}: & z_{2}(t)=-t+i(1-t), & 0 \leq t \leq 1 \\
\gamma_{3}: & z_{3}(t)=\cos (\pi(t+1))+i \sin (\pi(t+1)), & 0 \leq t \leq 1
\end{array}
$$

Obtain a contour parametrization for Γ by employing the techniques of rescaling; rescale so that γ_{1} is traced as t varies between 0 and $\frac{1}{3}, \gamma_{2}$ is traced for $\frac{1}{3} \leq t \leq \frac{2}{3}$, and γ_{3} is traced for $\frac{2}{3} \leq t \leq 1$.

Q1

Q2) Compute

$$
\left(e^{z_{1}}+e^{-z_{1}}\right) \cdot\left(e^{z_{2}}+e^{-z_{2}}\right)+\left(e^{z_{1}}-e^{-z_{1}}\right) \cdot\left(e^{z_{2}}-e^{-z_{2}}\right)
$$

Using the result obtained find the trigonometric identity for $\cosh \left(z_{1}+z_{2}\right)$.
$(a+b)(c+d)+(a-b)(c-d)=2 a c+2 b d$.
Q3) Compute

$$
\left(e^{z_{1}}+e^{-z_{1}}\right) \cdot\left(e^{z_{2}}-e^{-z_{2}}\right)+\left(e^{z_{1}}-e^{-z_{1}}\right) \cdot\left(e^{z_{2}}+e^{-z_{2}}\right)
$$

Using the result obtained find the trigonometric identity for $\sinh \left(z_{1}-z_{2}\right)$. $(a+b)(c-d)+(a-b)(c+d)=2 a c-2 b d$.

Q4) Evaluate the following contour integral.

$$
\int_{\Gamma} \frac{-2 z^{2}+z+3}{z^{3}} d z
$$

Q5) In the following circuit AC source; $3 \cos (2 t-\pi / 2)$ Volt is connected for a long time and the responses to this source are at steady state. obtain the steady state voltage $v_{o}(t)$ on the

Q5
inductor.

Q6) A complex function $u(x, y)=2 x y$ is given. Is it is harmonic? If yes, find harmonic conjugate of this function.

Q7) A complex function $u(x, y)=\frac{x}{x^{2}+y^{2}}$ is given. Is it is harmonic? If yes, find harmonic conjugate of this function.

Q8) The complex logarithm function is defined as in the following.

$$
\begin{array}{ll}
z & =r e^{i \theta} \\
\log (z) & =\log (r)+\theta+2 \pi k, \quad k \in \mathbb{Z}
\end{array}
$$

A branch of the logarithm is

$$
\mathcal{L}_{0}(z)=\log (r)+\theta, \quad \text { for } 0<\theta \leq 2 \pi
$$

What is the domain that $\mathcal{L}_{0}(z)$ is analytic. Find $\mathcal{L}_{0}\left(1+i 0^{+}\right)$, and $\mathcal{L}_{0}\left(1+i 0^{-}\right)$. Obtain $\frac{d}{d z} \mathcal{L}_{0}(z)$.

Q9) Two vectors fields; $\mathbf{V}(x, y)=(-y, x)$, and $\mathbf{V}(x, y)=\left(-y^{2}, x y\right)$ are given. For each of the vector field and the following contours test Green's theorem.

Q10) Find the singularities and the residues of the following complex function.

$$
f(z)=(2+i) z^{2}-3 i z+1-2 i+\frac{1-i}{z-2 i}+\frac{1+i}{z+2 i}-\frac{3}{(z+2)^{2}}+\frac{2}{z+2}
$$

Q11) Compute the following integral along the simple closed contour Γ traversed once counter clockwise direction.

$$
\int_{\Gamma} \frac{1-\cos (z)}{z(z+i)^{2}} d z
$$

Q11

Q12) Evaluate the following integral along the simple closed contour Γ traversed once counter clockwise direction.

$$
\int_{\Gamma} \frac{e^{z} \sin ^{2}(z)}{z\left(z^{2}+4\right)} d z
$$

