Instructions Answer all questions. Give your answers clearly. Do not skip intermediate steps even they are very easy. Complete answers with no error receive full mark; expressional and notational errors are not overlooked.

Calculators and cell phones are not allowed in the exam.
Time 120 minutes.

QUESTIONS

Q1) (20p) Evaluate the following mathematical operations. Compute only two values $(k=0,1)$ of the operations in (a) and (e). Write your results in Cartesian form.
a) $\log \left(e^{2} \cos (3)+i e^{2} \sin (3)\right)$
b) $\cos (\pi / 2+i \log (6))$
c) $\cosh (\log (4)-i \pi / 2)$
d) $\sqrt[3]{8 i}$
e) $\left(-e^{\pi}\right)^{i}$.

Q2) (16 p) Determine and plot sets described by the following inequalities.
a) $-1 \leq \operatorname{Re} z<2$,
b) $\pi>\operatorname{Arg} z>\pi / 4$,
c) $|z+1-2 i| \leq 1$,
d) $|z+1-2 i|>1$.

Q3) (10 p) Find each of the following limits.
a) $\lim _{z \rightarrow-2 i} \frac{z^{3}+4 z}{z+2 i}$
b) $\lim _{z \rightarrow-1+i} \frac{2 z^{2}+3 z+3+i}{z^{2}+4 z+4-2 i}$.

Q4) $(15 \mathrm{p})$ Find $\frac{\mathrm{d} w}{\mathrm{dz}}$ for each of the following.
a) $w=\tanh z$
b) $\quad w=i \sin \left(\frac{1}{z}\right)+\cos (2 z)$
c) $w=[\sinh z+1]^{2}$.

Q5) (12 p) Check analyticity of the following functions with Cauchy-Riemann equations. Remember that x and y are real and imaginary parts and r and θ are magnitude and phase of complex variable $z=x+i y=r e^{j \theta}$.
a) $w(x, y)=2 x^{2}-2 y^{2}-3 x+i(4 x y-3 y)$
b) $\quad w(r, \theta)=3 r \cos (\theta)+i r \sin (\theta)$
c) $w(z)=z^{2}+2 \bar{z}$.

Q6) (8 p) Consider the complex valued function $g(\theta)=e^{i \theta}, \quad \theta \in \mathbb{R}$. Since $g^{\prime \prime}(\theta)=-e^{i \theta}$, the following second order differential equation can be derived.
$g^{\prime \prime}(\theta)+g(\theta)=0$
a) Is $g(\theta)=A \cos (\theta)+B \sin (\theta)$ also a solution of this differential equation? b) If your answer is yes, obtain the coefficients A and B that make $A \cos (\theta)+B \sin (\theta)=e^{i \theta}$.

Q7) (10 p) Compute the length of the curve traced by $z(t)=t+i \frac{1}{2} t^{2}, \quad 0 \leq t \leq 1$. When needed you can use the following mathematical expressions.

$$
\begin{array}{lll}
\int \sqrt{1+t^{2}} \mathrm{dt} & =\frac{\sinh ^{-1}(\mathrm{t})}{2}+\frac{\mathrm{t} \sqrt{\mathrm{t}^{2}+1}}{2}+\text { constant } & \\
\sinh (\log (1+\sqrt{2})) & =1, & \log (1+\sqrt{2}) \approx 0.88
\end{array}
$$

$$
\sqrt{2} \quad \approx 1.41
$$

Q8) $(19 \mathrm{p})$
a) Compute the contour integral of $f(z)=z^{n}$ along $C: z(t)=\cos (t)+i \sin (t), \quad 0 \leq t<2 \pi$, where n is an integer; $\oint_{\mathrm{C}} \mathrm{f}(z) \mathrm{d} z$.
b) Compute the contour integral; $\oint_{C} f(z) d z$, of

Q8
$f(z)=\frac{2\left(3 z^{3}+10 z^{2}+14 z+15\right)}{z(2 z+3)\left(z^{2}+2 z+5\right)}=\frac{2}{z}+\frac{1}{z+1-2 i}+\frac{1}{z+1+2 i}-\frac{1}{z+\frac{3}{2}}$
over a closed contour C traversed once in the counter-clockwise direction enclosing the origin as indi-
cated in the figure.

Q9) (10 p) Evaluate
$\oint_{C}\left[\frac{2}{z-i}+\frac{6}{(z-i)^{2}}-3(z-i)^{2}+1\right] d z$,
where C is a closed contour traversed once in the counter-clockwise direction enclosing $z=i$.

