Instructions Answer all questions. Give your answers clearly. Each question is worth 25 points. Time 80 minutes.
Good Luck.

QUESTIONS

Q1) A signal and its Fourier transform are given in the following.

$$
m(t)=\frac{1}{1+t^{2}} \quad M(f)= \begin{cases}\pi e^{2 \pi f}, & f<0 \\ \pi e^{-2 \pi f}, & f>0\end{cases}
$$

Find Hilbert transform of this signal.
Hint: In the frequency domain Hilbert transform is $-j \operatorname{sign}(f) M(f)$. Computing inverse Fourier transformation of $-j \operatorname{sign}(f) M(f)$, Hilbert transform of the signal is obtained.

$$
\begin{aligned}
\hat{m}(t) & =\int_{-\infty}^{\infty}[-j \operatorname{sign}(f) M(f)] e^{j 2 \pi f t} d f \\
& =j \pi \int_{-\infty}^{0} e^{2 \pi f} e^{j 2 \pi f t} d f-j \pi \int_{0}^{\infty} e^{-2 \pi f} e^{j 2 \pi f t} d f \\
& =j \pi \int_{-\infty}^{0} e^{(2 \pi+j 2 \pi t) f} d f-j \pi \int_{0}^{\infty} e^{(-2 \pi+j 2 \pi t) f} d f \\
& =\cdots
\end{aligned}
$$

Q2) A message signal $m(t)=\cos (3 \pi t)$ is modulated via a double side band suppressed carrier modulator. A noise signal $n(t)=\frac{1}{10} \sum_{\ell=-\infty}^{\infty} \delta(t-\ell)$ is added to the modulated signal in the channel. This signal is demodulated by a coherent detector in the receiver (see the block diagram given below). The bandwidth of the low pass filter in the detector is 1.75 Hz . Find $Y(f)$. Compute signal to noise ratio at the output; ratio of the average power of the recovered message signal and the the average power of the noise at the output.

Hint:

$$
\begin{aligned}
\sum_{\ell=-\infty}^{\infty} \delta(t-\ell) & =\sum_{\ell=-\infty}^{\infty} e^{j 2 \pi \ell t} \\
& =1+2 \sum_{\ell=1}^{\infty} \cos (2 \pi \ell t)
\end{aligned}
$$

Q3) A message signal, $m(t)=2 \cos \left(2 \pi f_{o} t\right)-6 \sin \left(6 \pi f_{o} t\right)$ and a carrier, $c(t)=\cos \left(2 \pi f_{c} t\right)$ are given. Suppose that $f_{c}=10 f_{o}$. The message signal varies in the range $[-10,10]$.
a) Write AM signal. What should amplitude sensitivity; k_{a} be chosen for 50% modulation index? Obtain lower and upper side band signals. Plot the spectrum of this AM signal. What is the transmission bandwidth of the AM signal.
b) Write SSB-SC signal for both cases; upper-side band is transmitted and lower side band is transmitted. Obtain the side band signal. Plot the spectrum of this SSB-SC signal. Plot the spectrum of this SSB-SC signal. What is the transmission bandwidth of the SSB-SC signal.

Q4) The following FM signal is given. Find the instantaneous frequency. Find the frequency deviation.

$$
s(t)=A \cos \left(2 \pi f_{o} t+4 \frac{f_{o}}{3}\left(t \arctan (t)-\frac{\ln \left(t^{2}+1\right)}{2}\right)+\frac{\pi}{7}\right)
$$

Hint:

$$
\begin{aligned}
\frac{d}{d t} \arctan (t) & =\frac{1}{t^{2}+1} \\
\frac{d}{d t} \ln (t) & =\frac{1}{t}
\end{aligned}
$$

If the range of the instantaneous frequency is $\left[f_{c}-\Delta f, f_{c}+\Delta f\right], \Delta f$ is the frequency deviation.

ANSWERS

A1)

$$
\begin{aligned}
\hat{m}(t) & =\int_{-\infty}^{\infty}[-j \operatorname{sign}(f) M(f)] e^{j 2 \pi f t} d f \\
& =j \pi \int_{-\infty}^{0} e^{2 \pi f} e^{j 2 \pi f t} d f-j \pi \int_{0}^{\infty} e^{-2 \pi f} e^{j 2 \pi f t} d f \\
& =j \pi \int_{-\infty}^{0} e^{(2 \pi+j 2 \pi t) f} d f-j \pi \int_{0}^{\infty} e^{(-2 \pi+j 2 \pi t) f} d f \\
& =\left.j \pi \frac{1}{2 \pi+j 2 \pi t}\right|_{-\infty} ^{0}-\left.j \pi \frac{1}{-2 \pi+j 2 \pi t}\right|_{0} ^{\infty} \\
& =j \pi \frac{1}{2 \pi+j 2 \pi t}+j \pi \frac{1}{-2 \pi+j 2 \pi t} \\
& =j \pi \frac{j 4 \pi t}{-4 \pi^{2}-4 \pi^{2} t^{2}} \\
& =\frac{-4 \pi^{2} t}{-4 \pi^{2}-4 \pi^{2} t^{2}} \\
& =\frac{t}{1+t^{2}}
\end{aligned}
$$

A2)

$$
\begin{aligned}
& s(t)=m(t) \cos (20 \pi t)=\cos (3 \pi t) \cos (20 \pi t) \\
& s_{1}(t)=s(t)+n(t)=\cos (3 \pi t) \cos (20 \pi t)+\frac{1}{10}+\frac{1}{5} \sum_{\ell=1}^{\infty} \cos (2 \pi \ell t) \\
& s_{1}(t) \cos (20 \pi t)= \\
& =\cos (3 \pi t) \cos ^{2}(20 \pi t)+\frac{1}{10} \cos (20 \pi t)+\frac{1}{5} \sum_{\ell=1}^{\infty} \cos (2 \pi \ell t) \cos (20 \pi t) \\
& = \\
& \frac{1}{2} \cos (3 \pi t)+\frac{1}{2} \cos (3 \pi t) \cos (40 \pi t)+\frac{1}{10} \cos (20 \pi t) \\
& \\
& \quad+\frac{1}{10} \sum_{\ell=1}^{\infty} \cos (20 \pi t+2 \pi \ell t)+\frac{1}{10} \sum_{\ell=1}^{\infty} \cos (20 \pi t-2 \pi \ell t) \\
& = \\
& \frac{1}{2} \cos (3 \pi t)+\frac{1}{4} \cos (43 \pi t)+\frac{1}{4} \cos (37 \pi t)+\frac{1}{10} \cos (20 \pi t) \\
& \\
& \quad+\frac{1}{10} \sum_{\ell=1}^{\infty} \cos (20 \pi t+2 \pi \ell t)+\frac{1}{10} \sum_{\ell=1}^{\infty} \cos (20 \pi t-2 \pi \ell t)
\end{aligned}
$$

$$
\begin{aligned}
s_{1}(t) \cos (20 \pi t)= & \frac{1}{2} \cos (3 \pi t)+\frac{1}{4} \cos (43 \pi t)+\frac{1}{4} \cos (37 \pi t)+\frac{1}{10} \cos (20 \pi t) \\
& +\frac{1}{10} \sum_{\ell=1}^{\infty} \cos (20 \pi t+2 \pi \ell t) \\
& +\frac{1}{10}+\frac{1}{5} \cos (2 \pi t)+\frac{1}{10} \sum_{\substack{\ell=1 \\
\ell \neq 9,10,11}}^{\infty} \cos (20 \pi t-2 \pi \ell t) \\
y(t)= & \frac{1}{10}+\frac{1}{2} \cos (3 \pi t)+\frac{1}{5} \cos (2 \pi t)
\end{aligned}
$$

$\frac{1}{2} \cos (3 \pi t)$ is the message signal recovered in the receiver and $\frac{1}{5} \cos (2 \pi t)$ is the unwanted signal (noise). The DC term does not contain any information and can be easily eliminated by a DC block circuit (a series capacitor). The average power of the received message is $\frac{1}{2}\left(\frac{1}{2}\right)^{2}$ and the average power of the noise is $\frac{1}{2}\left(\frac{1}{5}\right)^{2}$. Therefore SNR at the output of the receiver is

$$
\mathrm{SNR}=\frac{\frac{1}{2}\left(\frac{1}{2}\right)^{2}}{\frac{1}{2}\left(\frac{1}{5}\right)^{2}}=\frac{25}{4}
$$

A4)

$$
\begin{aligned}
& \theta(t)=2 \pi f_{o} t+4 \frac{f_{o}}{3}\left(t \arctan (t)-\frac{\ln \left(t^{2}+1\right)}{2}\right)+\frac{\pi}{7} \\
& \begin{aligned}
& \frac{d}{d t} \theta(t)=2 \pi f_{o}+4 \frac{f_{o}}{3}\left(\arctan (t)+t \frac{1}{t^{2}+1}-\frac{t}{t^{2}+1}\right) \\
&=2 \pi f_{o}+4 \frac{f_{o}}{3} \arctan (t) \\
& \begin{aligned}
f_{i}(t) & =\frac{1}{2 \pi} \frac{d}{d t} \theta(t) \\
& =f_{o}+\frac{2 f_{o}}{3 \pi} \arctan (t) \\
-\frac{\pi}{2} & \leq \arctan (t) \leq \frac{\pi}{2} \\
f_{o}-\frac{f_{o}}{3} & \leq f_{i}(t) \quad \leq f_{o}+\frac{f_{o}}{3}
\end{aligned}
\end{aligned} r l
\end{aligned}
$$

Hence,

$$
\Delta f=\frac{f_{o}}{3}
$$

